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1. Introduction 
 

The problem of power and communication limitation in underwater environment makes it 
more challenge to increase the degree of autonomy and intelligence for an autonomous 
underwater vehicle (AUV). An infrastructure of autonomous teleoperation platform for 
AUV is established and described, which allows control to be shared between the intelligent 
decision system in AUV system and operators throughout a mission.  
In the (Paunicka J.L. et al., 2001, Samad T. et al., 2003, and Wills L. et al., 2000), the 
information-centric control and engineering have a remarkably successful history of 
enabling for designing, testing, and transitioning embedded software to unmanned air 
vehicle (UAV) platforms. A new software infrastructure called Open Control Platform 
(OCP) will accommodate in changing navigation information and control components, 
interoperate in heterogeneous environments, and maintain viability in unpredictable and 
changing environments. The OCP extends new advances in real-time middleware 
technology, which allows distributed heterogeneous components to communicate 
asynchronously in real-time via CORBA middleware. It uses event-based distributed 
communication and it capable of transmitting events at different priorities. This enables 
highly decoupled interaction between the different components of the system, which tends 
to localize architectural or configuration changes that promising to be implemented quickly 
and high reliability in the real system. 
There are many examples of nice control algorithms for AUV which had done in several 
platforms (Valavanis K.P.  et al., 1997), but in the implementation of those control systems in 
the sense of tightly coupling model in remote operation is widely open for sub-discipline of 
software engineering. We further investigate how the real-time control system performance 
could be reconfigured easily both in semi-automatically or manually interventions by 
remote station, and also develop a simulation platform to support a tuning mechanism of 
control parameters during runtime (i.e. feedback gains or trajectories) by using Matlab on 
separated machines connected via CORBA event-channel. 
In this paper we organized as follows: Section 2 presents AUV dynamic model, physical 
values, and control algorithm. Section 3 gives the simulation systems design; include the 
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hardware of simulation workstation, tools and interfaces, and middleware infrastructure. 
Section 4 presents results from the simulations together with the assumptions of problems 
solution. The last section covers conclusions. 

 
2. Equations Of Motion 
 
2.1 AUV Dynamic Model 
The AUV Model for depth control is depicted in figure 1.  

 

 
Fig. 1. AUV Model 

 
The simple’s form of equation of motion is obtained with body axes coincident with the 
principles axes of inertia, and the origin at the center of mass center of gravity (CG), for this 
case the equation in the dimensionless form as in (Sname 1950) are:  
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The 6DOF components of the rigid body dynamic equations of motion of the submerged 
vehicle are:  
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where, X, Y, and Z are surge, sway, and heave force; K, M, and N are roll, pitch, and yaw 
moment; p, q, and r are roll, pitch, and yaw rate; u, v, and w are surge, sway, and heave 
velocity; x, y, and z are body fixed axes in positive forward, positive starboard, and positive 
down; Ix, Iy, and Iz is vehicle mass moment of inertia around the x-axis, around the y-axis, 
and around the z-axis; xG, yG, and zG are longitudinal position, athwart position, and vertical 
position of center of gravity; φ , θ , and ψ  are roll, pitch, and yaw angle. 
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Fig. 2. Physical Dimensions of Vehicle 

 
We can further simply equations (2) by assuming that Gy is small compared to the other 
terms. After several steps of linearization as in (Cristi, R. et al., 1990, and Riedel J.S., 1993), 
vertical motion equations become: 
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It can rewritten in the matrix form 
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   (4) 

 
Then, an AUV dynamic equation typically represented using the notation: x Ax Bu= + , with 
state vector [ ]Tx w q zθ= and the control input u δ= : 
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where: 
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Finally, we refer to the physical parameter of NPS AUV1 in the (Healey A.J. et al., 1997) as 
depicted in figure 2, the state space equation became: 
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2.2 LQR Formulation 
The general problem of Linear quadratic (LQ) optimal control problem to find a control law 

( ) ( )u t Kx t= − to minimize
0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t dt
∞
⎡ ⎤= +⎣ ⎦∫ , where 1 TK R B P−=  and P is 

solution of Riccati equation 1 0T TA P PA PBR B P Q−+ + + = , and weighting matrices are: Q≥0 
and R>0. 
Linear quadratic (LQ) servo is command following regarding to the reference input. An nth-
order system having r inputs and m outputs: ( ) ( ); ( )r px t x t y t⎡ ⎤= ⎣ ⎦ , where 1( ) m

py t R ×∈ is 

output and ( ) 1( ) n m
rx t R − ×∈ is rest of system state, 1( ) ( ) ( ) me t r t y t R ×= − ∈  is the error vector 

with 1( ) mr t R ×∈ is plan output and 1( ) my t R ×∈  is reference.  Consider state space model: 
 

( ) ( ) ( )x t Ax t Bu t= +                                                               (7) 
 
with ( ) ( )py t C x t= , ( ) ( )r px t D x t= , and pC is ( )0m n m m mI× − ×⎡ ⎤

⎣ ⎦ , pD is ( ) ( ) ( )0n m n m n m mI − × − − ×⎡ ⎤
⎣ ⎦ .  
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Consider control input ( ) ( )u t Gx t= − , and control gain G consists of y rG G G⎡ ⎤= ⎣ ⎦ , where 

the gain vector is m m
yG R ×∈ and ( )m n m

rG R × −∈ . The control law than became: 
 

( ) ( ) ( ) ( )y r r yu t G y t G x t G r t= − − +                                                     (8) 
 
substitute (8) into (7), we have differential equation of close-loop system as follows:  
 

( ) ( ) ( )r y p y p yx t A BG C BG D x t BG r t⎡ ⎤= − − +⎣ ⎦                                      (9) 

 
Solution of equation (9) could be solving by using Runga-Kutta 4th order approximation: 
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2.3 Q, R Selection via GA 
In order to choose the weighting matrices of LQR control algorithm, it is often by trial and 
error method. Another method to find an expected values of weighting matrices component 
is using guided random search, this is one of the easiest way and it could be handle by 
search function in Matlab simulation source. The most simple and well known technique for 
guided random search in machine learning application is using the Genetic Algorithm (GA), 
as shown in figure 3.  
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Fig. 3. GA Flowchart 

 
Genetic algorithm performed chromosome operation and individual evaluation. In the first 
iteration, chromosome operation generates the initial population consists of 10 populations 
randomly with logarithmic distribution. Each population consists of 5 chromosomes, 4 
chromosomes of Q vector matrix, and 1 chromosome of R matrix. Individual evaluation 
consists of selection procedure according to the fitness function variables of time domain 
characteristic; such as maximum overshoot tolerance is 10%, maximum rise time tolerance is 
15%, maximum settling time tolerance is 10%, maximum steady-state error tolerance is 0.2%, 
also to check the location of the close-loop poles whether it near by imaginary axis. If there 
are several values are passed through those selection criterions than GA choose 2 best 
values, then it transfer to become a new candidate in next generation selection together with 
new 8 populations, where 6 from randomly generated and the 2 other new populations from 
both crossover and mutation from 2 best previous populations. Finally, in the end of 
iteration only one best value is selected. 
An Implementation of GA into LQ Servo control algorithm as depicted in figure 4. The 
purpose of this combination is to obtain the global optimal feedback gain K, which could be 
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change anytime during runtime. The purpose of changing K is to suppress undesired 
controller performances. 
 

 
 

Fig. 4. LQ Servo with GA 

 
3. System Environment 
 

In this paper, an AUV decentralized control system approach is investigated, this will open 
a possibility to enable control system component to interact between various control 
components on the simulation network infrastructure. During the course of theoretical 
studies to simulation platform development, an OCP has emerges some promises to 
overcome any boundary for both in control system domain and network infrastructure 
domain.  
 
3.1 Simulation Workstation 
To implement the proposed AUV depth control system simulation, information may needs 
to be rerouted between AUV subsystems or control components. In this situation, 
sometimes a certain data may became temporarily very important and at other time not 
needed at all.  In figure 5, a simulation system consist of two node connected with a general 
10 Mb Ethernet, PC1 as a server and PC2 as client, every node will consists of two blocks, 
first block consist of vehicle model and control algorithm, and second block is consist real-
time network components that support hard control reconfiguration.  
The two PCs as server and client are connected via middleware communication using TAO-
CORBA Event channel, which is described more details in (Schmidt D. C. et al., 2000). A PC1 
running a Matlab simulation of vehicle model and control algorithm, while PC2 running a 
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Matlab simulation as sensor source and mission control station to allows a user to 
dynamically modify any parameters during a runtime simulation. 
 

 
Fig. 5. AUV Simulation Block Diagram 

 
3.2 Simulation Tools and Interfaces 
 
Generally, in the development step, mostly control engineer test the new control algorithm 
in Matlab environment. Matlab is a convenient tool for graphical plotting; it is relatively 
difficult to use C++ to plot system responses in multiple dimensions. However, C++ is 
widely used in real-time data acquisition and control in industrial applications.  
The interface between C++ and Matlab offers a significant improvement in data acquisition 
and control system analysis. This makes the analysis for complicated systems possible in the 
real world. Using the interface method, it is much more convenient to perform matrix 
operations with real-time controllability.  
Another point is, for real-time systems, especially for the multiple variables control system, 
a state variable matrix has to be used to make the real-time analysis based on the state 
feedback from the system outputs. By using the interface between C++ and Matlab, a lot of 
data analysis and real-time control tasks for actual systems are possible. Another advantage 
to using the interface between C++ and Matlab is to handle multi dimension matrix 
operations and continuous plotting of system responses. Almost all data acquisition and 
control processes need time response of trajectory in real-time.  
In figure 6, illustrates the block diagram of operation principle C++ and Matlab interface. 
Via this interface, C++ program should collect the data from PC2 through CORBA and 
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create the data variables in ASCII format. Matlab first picks up the data from the data 
variables have stored by C++ and then performs the matrix operations based on the data. 
The results can be sent back to C++ by Matlab in the ASCII variables, while C++ program 
continue to executing the communication task to send a Matlab results. 
 

 
 
Fig. 6. Matlab and C++ Interfaces 

 
The interface between Matlab and C++ in order to transfer a data through CORBA event 
channel is not so complicated, although for control engineers, this method offers a 
significant improvement in data acquisition and control system analysis; this makes the 
analysis for complicated systems possible in the real world.  
 
3.3 Middleware Infrastructure 
 
The CORBA middleware is an application framework that provides interoperability 
between objects, built-in different languages, running on different machines in 
heterogeneous distributed environments. Using a CORBA, a client can transparently invoke 
a method on a server object, which can be on the same machine or across a network. The 
ORB intercepts the call and is responsible for finding an object that can implement the 
request, pass it the parameters, invoke its method, and return the results.  
The CORBA event service provides support for decoupled communications between objects. 
It allows suppliers to send messages to one or more consumers with a single call. The event 
service acts as a mediator that decouples suppliers from consumers.  
In figure 7, a CORBA event service provides a flexible model for asynchronous and group 
communication among distributed and collocated objects. Consumers are the ultimate 
targets of events generated by suppliers. Suppliers and consumers can both play active and 
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passive roles. An active push supplier pushes an event to a passive push consumer. 
Likewise, a passive pull supplier waits for an active pull consumer to pull an event from it. 
Suppliers use event channels to push data to consumers. Likewise, consumers can explicitly 
pull data from suppliers. The push and pull semantics of event propagation help to free 
consumers and suppliers from the overly restrictive synchronous semantics of the standard 
CORBA two way communication model.  
 

 
 
Fig. 7. Participants in the Event Channel Architecture 

 
In this paper, a CORBA event service implementation focuses on real-time enhancements to 
the push model, which allows suppliers of events to initiate the transfer of event data to 
consumers. Suppliers push events to the event channel, which in turn pushes the events to 
consumers.  

 
4. Simulation Results 
 
4.1 Simulation Condition 1 
Let consider a first example as depicted in figure 8; in this simulation we want to control θ 
near zero and z near -2 meter with 30 times counter duration. We use a reasonable amount 
of dive planes to do the job. Assumption: 4o dive planes when pitch angle deviates to 5o 
from zero, the AUV reaches a depth of -2 meter with 0.32 meter deviation. Therefore, we 
assume all terms in Q →0 and R →0, except: q11 = (4/57.2958)-2=205.21, q44 = (5/57.2958)-2= 
131.31, and r11= (0.32)-2=9.76, simulation result as illustrated in figure 8 using solid line. To 
overcome undershoot and overshoot in the runtime simulation, after duration of 

4t = seconds PC2 send new weighting matrices to the PC1 to change a pitch angle deviates 
to 5o with 0.02 meter deviation at -2 meter depth: q11=(4/57.2958)-2= 205.21, q44 = (5/57.2958)-

2=131.31, r11= (0.02)-2=2500, simulation result as illustrated in figure 8 using dash line. 
The time response of both controller are equal for 4t ≤ seconds because of all parameters 
are same, by intervention from PC2 to PC1 when 4t ≥ seconds, the new control parameters 
are apply during runtime, then it could be seen that time response is improved significantly, 
especially to suppress undershoot and overshoot.  
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Fig. 8. Online Overshoot &Undershoot Suppression after 4 seconds 

 
4.2 Simulation Condition 2 
Similar to the previous simulation, PC1 running the controller gain and system matrix with 
assuming all terms in Q →0 and R →0, except: q11 = 205.21, q44 = 131.31, and r11 = 400, as 
illustrated in figure 9 using solid line. To reduce the rise time duration in the runtime 
simulation, when 2t = seconds PC2 send a new weighting matrices to the PC1 to change a 
pitch angle deviates to 10o from zero with 0.02 meter deviation at -5 meter depth: q11 = 
205.21, q44= 23.83, and r11  = 2500, as illustrated in figure 9 using dash line. In this case, a 
settling time response will be change during runtime when 2t ≥ seconds. It could be seen 
that time response is improved significantly.  
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Fig. 9. Online Settling Time Suppression after 2 second. 

 
4.3 Simulation Condition 3 
In the first simulation, we perform a static simulation without OCP infrastructure using 
single weighting matrices, we assume all terms in Q →0 and R →0, except: q11 = 205.21, q44= 
23.83, and r11  = 2500, as illustrated in figure 10 using dot line. In the second simulation 
under OCP infrastructure, PC2 send any weighting matrices value to the PC1 (i.e. 
Q=diag[2,10,20,90], and R=[0.1]). Then GA will find a new weighting matrices, a global 
optimal value in this runtime all terms in Q →0 and R →0, except: q11 =397.33, q44 =98.67 and 
r11 = 1272.8, as illustrated in figure 10 using solid line. 
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Fig. 10. Depth Control Simulation Result 

 
We have 2 simulation results, with OCP and without OCP, but the performance is similar as 
depicted in figure 10 because of given system is simple. If the system is more complex using 
6DOF with more sensors and actuators we can see the difference performance that OCP is 
more effective in complicated cases. 

 
5. Concluding Remarks 
 
In this paper, we propose a new approach of decentralized system environment for AUV 
simulation using Matlab and CORBA event channel coexistence on several machines, we 
believe it will emerge more investigation how the real-time control system performance 
could be reconfigured easily both in semi-automatically or manually interventions by a 
remote station.  
In the future research, we expect to uncover the effective CORBA programming to support 
Matlab and CORBA event channel coexistence that will be affected to increase the degree of 
real-time reconfigurable control significantly. 
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