
Decentralized Control System Simulation for Autonomous Underwater Vehicles

1

25

Decentralized Control System Simulation for
Autonomous Underwater Vehicles

Nanang Syahroni1, Young Bong Seo2 and Jae Weon Choi2

1Electronics Engineering Politechnic Institute of Surabaya
2School of Mechanical Engineering, Pusan National University

1Indonesia
2Korea

1. Introduction

The problem of power and communication limitation in underwater environment makes it
more challenge to increase the degree of autonomy and intelligence for an autonomous
underwater vehicle (AUV). An infrastructure of autonomous teleoperation platform for
AUV is established and described, which allows control to be shared between the intelligent
decision system in AUV system and operators throughout a mission.
In the (Paunicka J.L. et al., 2001, Samad T. et al., 2003, and Wills L. et al., 2000), the
information-centric control and engineering have a remarkably successful history of
enabling for designing, testing, and transitioning embedded software to unmanned air
vehicle (UAV) platforms. A new software infrastructure called Open Control Platform
(OCP) will accommodate in changing navigation information and control components,
interoperate in heterogeneous environments, and maintain viability in unpredictable and
changing environments. The OCP extends new advances in real-time middleware
technology, which allows distributed heterogeneous components to communicate
asynchronously in real-time via CORBA middleware. It uses event-based distributed
communication and it capable of transmitting events at different priorities. This enables
highly decoupled interaction between the different components of the system, which tends
to localize architectural or configuration changes that promising to be implemented quickly
and high reliability in the real system.
There are many examples of nice control algorithms for AUV which had done in several
platforms (Valavanis K.P. et al., 1997), but in the implementation of those control systems in
the sense of tightly coupling model in remote operation is widely open for sub-discipline of
software engineering. We further investigate how the real-time control system performance
could be reconfigured easily both in semi-automatically or manually interventions by
remote station, and also develop a simulation platform to support a tuning mechanism of
control parameters during runtime (i.e. feedback gains or trajectories) by using Matlab on
separated machines connected via CORBA event-channel.
In this paper we organized as follows: Section 2 presents AUV dynamic model, physical
values, and control algorithm. Section 3 gives the simulation systems design; include the

Intelligent Underwater Vehicles

2

hardware of simulation workstation, tools and interfaces, and middleware infrastructure.
Section 4 presents results from the simulations together with the assumptions of problems
solution. The last section covers conclusions.

2. Equations Of Motion

2.1 AUV Dynamic Model
The AUV Model for depth control is depicted in figure 1.

Fig. 1. AUV Model

The simple’s form of equation of motion is obtained with body axes coincident with the
principles axes of inertia, and the origin at the center of mass center of gravity (CG), for this
case the equation in the dimensionless form as in (Sname 1950) are:

[]
[]
[]

()

()

()

x z y

y x z

z y x

X m u qw r
Y m ru pw
Z m w pv qu
K I p I I qr

M I q I I rp

N I r I I pq

υ
υ

= + −
= + −
= + −
= + −

= + −

= + −

 (1)

The 6DOF components of the rigid body dynamic equations of motion of the submerged
vehicle are:

Decentralized Control System Simulation for Autonomous Underwater Vehicles

3

2 2

2 2

2 2

2 2

[() () ()]

[() () ()]

[() () ()]

() () () () [() (

G G G

G G G

G G G

x z y xy yz xz G G

X m u r wq x q r y pq r z pr q

Y m ur wq x pq r y p r z qr p

Z m w uq p x pr q y qr p z p q

K I p I I qr I pr q I q r I pq r m y w uq p z

υ

υ

υ

υ υ

= − + − + + − + +

= + − + + − + + −

= − + + − + + − +

= + − + − − − − + + − + − +

2 2

2 2

)]

() () () () [() ()]

() () () () [() ()]

y x z xy yz xz G G

z y x xy yz xz G G

ur wp

M I q I I pr I qr p I pq r I p r m x w uq p z u r wq

N I r I I pq I p q I pr q I qr p m x ur wp y u r wq

υ υ

υ υ

−

= + − − + − − − − + − + − − +

= + − − − − + + − + + − − − −

 (2)

where, X, Y, and Z are surge, sway, and heave force; K, M, and N are roll, pitch, and yaw
moment; p, q, and r are roll, pitch, and yaw rate; u, v, and w are surge, sway, and heave
velocity; x, y, and z are body fixed axes in positive forward, positive starboard, and positive
down; Ix, Iy, and Iz is vehicle mass moment of inertia around the x-axis, around the y-axis,
and around the z-axis; xG, yG, and zG are longitudinal position, athwart position, and vertical
position of center of gravity; φ , θ , and ψ are roll, pitch, and yaw angle.

Intelligent Underwater Vehicles

4

Fig. 2. Physical Dimensions of Vehicle

We can further simply equations (2) by assuming that Gy is small compared to the other
terms. After several steps of linearization as in (Cristi, R. et al., 1990, and Riedel J.S., 1993),
vertical motion equations become:

2

2

() () ()

() () () ()

-

w G q w q

w G y q G B w q G

q

m Z w mx Z q Z Uw m Z Uq U Z

M mx w I M q z W z M Uw M mx Uq M U

z U w

δ

δ

θ

δ

θ δ

θ

=

− − + = + + +

− − + − = − − + + − −

= +

 (3)

It can rewritten in the matrix form

()
() ()

()
()

2

2

1 00 01 0 0 0 0
() 00 0 0

0 () 0 0
0 0 1 1 00 00

qG qw w

G BG w y q w q G

m Z Umx Zm Z Z U w Z Uw
z W z Bmx M I M M U qq M mx U M U

zz U

δ

δ

θθ

δ

⎡ ⎤⎡⎡ ⎤⎡ ⎤ ⎤ ⎡ ⎤ ⎢ ⎥⎢⎢ ⎥⎢ ⎥ ⎥ ⎢ ⎥+− +− ⎢ ⎥⎢⎢ ⎥⎢ ⎥ ⎥ ⎢ ⎥= + ⎢ ⎥⎢⎢ ⎥⎢ ⎥ ⎥ ⎢ ⎥− −− − − − ⎢ ⎥⎢⎢ ⎥⎢ ⎥ ⎥ ⎢ ⎥ ⎢ ⎥⎢⎢ ⎥ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎣ ⎦

 (4)

Then, an AUV dynamic equation typically represented using the notation: x Ax Bu= + , with
state vector []Tx w q zθ= and the control input u δ= :

2
121 22 23

231 32 33 2

00 0 1 0
0
0

1 0 0 0

GB

GB

b Ua z a U a U ww
a z a U a U qq b U

U zz

θθ

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5)

where:

Decentralized Control System Simulation for Autonomous Underwater Vehicles

5

21

22

23

31

32

33

()() ()()

()

() ()

()() ()()

()

() ()

()() (

w y q G q G w

GB G B

G q

y q w G q w

y q q G q q G

G q

w w G w

w G G

Dv m Z I M mx Z mx M

z z z
mx Z W

a
Dv

I M Z mx Z M
a

Dv
I M m Z mx Z M mx

a
Dv

mx Z W
a

Dv
m Z M mx M Ma

Dv
m Z Mq mx mx M

a

δ

= − − − + +

= −

+
= −

− + +
=

− + + + −
=

− −
=

− + +
=

− − + +
=

1

2

)()

() ()

() ()

w q

y q G q

y w G q

m Z
Dv

I M Z mx Z M
b

Dv
I Z M mx M Z

b
Dv

δ δ

δ δ

−

− + +
=

− + +
=

Finally, we refer to the physical parameter of NPS AUV1 in the (Healey A.J. et al., 1997) as
depicted in figure 2, the state space equation became:

00 0 1 0

0.0175 1.273 3.559 0 0.085
0.052 1.273 2.661 0 21.79

5 1 0 0 0

ww
qq
zz

θθ

δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6)

2.2 LQR Formulation
The general problem of Linear quadratic (LQ) optimal control problem to find a control law

() ()u t Kx t= − to minimize
0

() () () ()T TJ x t Qx t u t Ru t dt
∞
⎡ ⎤= +⎣ ⎦∫ , where 1 TK R B P−= and P is

solution of Riccati equation 1 0T TA P PA PBR B P Q−+ + + = , and weighting matrices are: Q≥0
and R>0.
Linear quadratic (LQ) servo is command following regarding to the reference input. An nth-
order system having r inputs and m outputs: () (); ()r px t x t y t⎡ ⎤= ⎣ ⎦ , where 1() m

py t R ×∈ is

output and () 1() n m
rx t R − ×∈ is rest of system state, 1() () () me t r t y t R ×= − ∈ is the error vector

with 1() mr t R ×∈ is plan output and 1() my t R ×∈ is reference. Consider state space model:

() () ()x t Ax t Bu t= + (7)

with () ()py t C x t= , () ()r px t D x t= , and pC is ()0m n m m mI× − ×⎡ ⎤

⎣ ⎦ , pD is () () ()0n m n m n m mI − × − − ×⎡ ⎤
⎣ ⎦ .

Intelligent Underwater Vehicles

6

Consider control input () ()u t Gx t= − , and control gain G consists of y rG G G⎡ ⎤= ⎣ ⎦ , where

the gain vector is m m
yG R ×∈ and ()m n m

rG R × −∈ . The control law than became:

() () () ()y r r yu t G y t G x t G r t= − − + (8)

substitute (8) into (7), we have differential equation of close-loop system as follows:

() () ()r y p y p yx t A BG C BG D x t BG r t⎡ ⎤= − − +⎣ ⎦ (9)

Solution of equation (9) could be solving by using Runga-Kutta 4th order approximation:

(1 2 2 2 3 4)(1) ()
6

k k k kx t x t + + +
+ = + (10)

where:
1 (, ())

2 (, () 1)
2 2

3 (, () 2)
2 2

4 (, () 3)

k f t x t
h hk f t x t k

h hk f t x t k

k f t h x t hk

=

= + +

= + +

= + +

2.3 Q, R Selection via GA
In order to choose the weighting matrices of LQR control algorithm, it is often by trial and
error method. Another method to find an expected values of weighting matrices component
is using guided random search, this is one of the easiest way and it could be handle by
search function in Matlab simulation source. The most simple and well known technique for
guided random search in machine learning application is using the Genetic Algorithm (GA),
as shown in figure 3.

Decentralized Control System Simulation for Autonomous Underwater Vehicles

7

Fig. 3. GA Flowchart

Genetic algorithm performed chromosome operation and individual evaluation. In the first
iteration, chromosome operation generates the initial population consists of 10 populations
randomly with logarithmic distribution. Each population consists of 5 chromosomes, 4
chromosomes of Q vector matrix, and 1 chromosome of R matrix. Individual evaluation
consists of selection procedure according to the fitness function variables of time domain
characteristic; such as maximum overshoot tolerance is 10%, maximum rise time tolerance is
15%, maximum settling time tolerance is 10%, maximum steady-state error tolerance is 0.2%,
also to check the location of the close-loop poles whether it near by imaginary axis. If there
are several values are passed through those selection criterions than GA choose 2 best
values, then it transfer to become a new candidate in next generation selection together with
new 8 populations, where 6 from randomly generated and the 2 other new populations from
both crossover and mutation from 2 best previous populations. Finally, in the end of
iteration only one best value is selected.
An Implementation of GA into LQ Servo control algorithm as depicted in figure 4. The
purpose of this combination is to obtain the global optimal feedback gain K, which could be

Intelligent Underwater Vehicles

8

change anytime during runtime. The purpose of changing K is to suppress undesired
controller performances.

Fig. 4. LQ Servo with GA

3. System Environment

In this paper, an AUV decentralized control system approach is investigated, this will open
a possibility to enable control system component to interact between various control
components on the simulation network infrastructure. During the course of theoretical
studies to simulation platform development, an OCP has emerges some promises to
overcome any boundary for both in control system domain and network infrastructure
domain.

3.1 Simulation Workstation
To implement the proposed AUV depth control system simulation, information may needs
to be rerouted between AUV subsystems or control components. In this situation,
sometimes a certain data may became temporarily very important and at other time not
needed at all. In figure 5, a simulation system consist of two node connected with a general
10 Mb Ethernet, PC1 as a server and PC2 as client, every node will consists of two blocks,
first block consist of vehicle model and control algorithm, and second block is consist real-
time network components that support hard control reconfiguration.
The two PCs as server and client are connected via middleware communication using TAO-
CORBA Event channel, which is described more details in (Schmidt D. C. et al., 2000). A PC1
running a Matlab simulation of vehicle model and control algorithm, while PC2 running a

Decentralized Control System Simulation for Autonomous Underwater Vehicles

9

Matlab simulation as sensor source and mission control station to allows a user to
dynamically modify any parameters during a runtime simulation.

Fig. 5. AUV Simulation Block Diagram

3.2 Simulation Tools and Interfaces

Generally, in the development step, mostly control engineer test the new control algorithm
in Matlab environment. Matlab is a convenient tool for graphical plotting; it is relatively
difficult to use C++ to plot system responses in multiple dimensions. However, C++ is
widely used in real-time data acquisition and control in industrial applications.
The interface between C++ and Matlab offers a significant improvement in data acquisition
and control system analysis. This makes the analysis for complicated systems possible in the
real world. Using the interface method, it is much more convenient to perform matrix
operations with real-time controllability.
Another point is, for real-time systems, especially for the multiple variables control system,
a state variable matrix has to be used to make the real-time analysis based on the state
feedback from the system outputs. By using the interface between C++ and Matlab, a lot of
data analysis and real-time control tasks for actual systems are possible. Another advantage
to using the interface between C++ and Matlab is to handle multi dimension matrix
operations and continuous plotting of system responses. Almost all data acquisition and
control processes need time response of trajectory in real-time.
In figure 6, illustrates the block diagram of operation principle C++ and Matlab interface.
Via this interface, C++ program should collect the data from PC2 through CORBA and

Intelligent Underwater Vehicles

10

create the data variables in ASCII format. Matlab first picks up the data from the data
variables have stored by C++ and then performs the matrix operations based on the data.
The results can be sent back to C++ by Matlab in the ASCII variables, while C++ program
continue to executing the communication task to send a Matlab results.

Fig. 6. Matlab and C++ Interfaces

The interface between Matlab and C++ in order to transfer a data through CORBA event
channel is not so complicated, although for control engineers, this method offers a
significant improvement in data acquisition and control system analysis; this makes the
analysis for complicated systems possible in the real world.

3.3 Middleware Infrastructure

The CORBA middleware is an application framework that provides interoperability
between objects, built-in different languages, running on different machines in
heterogeneous distributed environments. Using a CORBA, a client can transparently invoke
a method on a server object, which can be on the same machine or across a network. The
ORB intercepts the call and is responsible for finding an object that can implement the
request, pass it the parameters, invoke its method, and return the results.
The CORBA event service provides support for decoupled communications between objects.
It allows suppliers to send messages to one or more consumers with a single call. The event
service acts as a mediator that decouples suppliers from consumers.
In figure 7, a CORBA event service provides a flexible model for asynchronous and group
communication among distributed and collocated objects. Consumers are the ultimate
targets of events generated by suppliers. Suppliers and consumers can both play active and

Decentralized Control System Simulation for Autonomous Underwater Vehicles

11

passive roles. An active push supplier pushes an event to a passive push consumer.
Likewise, a passive pull supplier waits for an active pull consumer to pull an event from it.
Suppliers use event channels to push data to consumers. Likewise, consumers can explicitly
pull data from suppliers. The push and pull semantics of event propagation help to free
consumers and suppliers from the overly restrictive synchronous semantics of the standard
CORBA two way communication model.

Fig. 7. Participants in the Event Channel Architecture

In this paper, a CORBA event service implementation focuses on real-time enhancements to
the push model, which allows suppliers of events to initiate the transfer of event data to
consumers. Suppliers push events to the event channel, which in turn pushes the events to
consumers.

4. Simulation Results

4.1 Simulation Condition 1
Let consider a first example as depicted in figure 8; in this simulation we want to control θ
near zero and z near -2 meter with 30 times counter duration. We use a reasonable amount
of dive planes to do the job. Assumption: 4o dive planes when pitch angle deviates to 5o
from zero, the AUV reaches a depth of -2 meter with 0.32 meter deviation. Therefore, we
assume all terms in Q →0 and R →0, except: q11 = (4/57.2958)-2=205.21, q44 = (5/57.2958)-2=
131.31, and r11= (0.32)-2=9.76, simulation result as illustrated in figure 8 using solid line. To
overcome undershoot and overshoot in the runtime simulation, after duration of

4t = seconds PC2 send new weighting matrices to the PC1 to change a pitch angle deviates
to 5o with 0.02 meter deviation at -2 meter depth: q11=(4/57.2958)-2= 205.21, q44 = (5/57.2958)-

2=131.31, r11= (0.02)-2=2500, simulation result as illustrated in figure 8 using dash line.
The time response of both controller are equal for 4t ≤ seconds because of all parameters
are same, by intervention from PC2 to PC1 when 4t ≥ seconds, the new control parameters
are apply during runtime, then it could be seen that time response is improved significantly,
especially to suppress undershoot and overshoot.

Intelligent Underwater Vehicles

12

Fig. 8. Online Overshoot &Undershoot Suppression after 4 seconds

4.2 Simulation Condition 2
Similar to the previous simulation, PC1 running the controller gain and system matrix with
assuming all terms in Q →0 and R →0, except: q11 = 205.21, q44 = 131.31, and r11 = 400, as
illustrated in figure 9 using solid line. To reduce the rise time duration in the runtime
simulation, when 2t = seconds PC2 send a new weighting matrices to the PC1 to change a
pitch angle deviates to 10o from zero with 0.02 meter deviation at -5 meter depth: q11 =
205.21, q44= 23.83, and r11 = 2500, as illustrated in figure 9 using dash line. In this case, a
settling time response will be change during runtime when 2t ≥ seconds. It could be seen
that time response is improved significantly.

Decentralized Control System Simulation for Autonomous Underwater Vehicles

13

Fig. 9. Online Settling Time Suppression after 2 second.

4.3 Simulation Condition 3
In the first simulation, we perform a static simulation without OCP infrastructure using
single weighting matrices, we assume all terms in Q →0 and R →0, except: q11 = 205.21, q44=
23.83, and r11 = 2500, as illustrated in figure 10 using dot line. In the second simulation
under OCP infrastructure, PC2 send any weighting matrices value to the PC1 (i.e.
Q=diag[2,10,20,90], and R=[0.1]). Then GA will find a new weighting matrices, a global
optimal value in this runtime all terms in Q →0 and R →0, except: q11 =397.33, q44 =98.67 and
r11 = 1272.8, as illustrated in figure 10 using solid line.

Intelligent Underwater Vehicles

14

Fig. 10. Depth Control Simulation Result

We have 2 simulation results, with OCP and without OCP, but the performance is similar as
depicted in figure 10 because of given system is simple. If the system is more complex using
6DOF with more sensors and actuators we can see the difference performance that OCP is
more effective in complicated cases.

5. Concluding Remarks

In this paper, we propose a new approach of decentralized system environment for AUV
simulation using Matlab and CORBA event channel coexistence on several machines, we
believe it will emerge more investigation how the real-time control system performance
could be reconfigured easily both in semi-automatically or manually interventions by a
remote station.
In the future research, we expect to uncover the effective CORBA programming to support
Matlab and CORBA event channel coexistence that will be affected to increase the degree of
real-time reconfigurable control significantly.

Decentralized Control System Simulation for Autonomous Underwater Vehicles

15

6. References

Cristi, R., Papoulias, F.A., and Healey, A.J. (1990), Adaptive Sliding Mode Control of
Autonomous Underwater Vehicles in the Dive Plane, In: IEEE Journal of Oceanic
Engineering, Vol. 15, Issue: 3, page(s): 152-160, Piscataway, NJ, USA.

Healey A.J., Papoulias P.A., and Cristi R. (1989), Design and Experimental Verification of a
Model Based Compensator for Rapid AUV Depth Control, In: Proceeding of the
Int’l Symposium on Unmanned Untethered Submersible Technology, page(s): 458-
474, Washington DC, USA.

Paunicka J.L., Corman W.E.,and Mendel B.R. (2001), A CORBA-Based Middleware Solution
for UAVs, In: Proceeding of Fourth International Symposium on Object-Oriented
Real-Time Distributed Computing, page(s): 261-267, Magdeburg, Germany.

Riedel, J.S., (1993), Pitchfork Bifurcations and Dive Plane Reversal of Submarines at Low
Speeds, Engineer’s Thesis, Naval Postgraduate School, Monterey, California, USA.

Samad T. and Balas G. (2003), Software-Enabled Control: Information Technology for Dynamical
Systems, John Wiley & Sons/IEEE Press, Hoboken, NJ, USA.

Schmidt D. C., and Kuhns K. (2000), An Overview of the Real-time CORBA Specification, In:
IEEE Computer special issue on Object-Oriented Real-time Distributed Computing. Vol.
33, Issue: 6, page(s): 56-63, Los Alamitos, CA, USA.

Sname, The Society of Naval Architects and Marine Engineers (1950), Nomenclature for
Treating the Motion of a Submerged Body Through a Fluid. In: Technical Research
Bulletin, No. 1-5, NY, USA.

Valavanis K.P., Gracanin D., Matijasevic M., Kolluru R., and Demetriou G.A. (1997), Control
architectures for autonomous underwater vehicles, In: IEEE Control Systems
Magazine, Vol.17, Issue: 6, page(s): 48-64. Ann Arbor, MI, USA.

Wills L., Kannan S.K. (2000), Heck B.S.,Vachtsevanos G., Restrepo C., Sander S., Schrage
D.P., and Prasad J.V.R. An Open Software Infrastructure for Reconfigurable
Control Systems, In: Proceeding of American Control Conference, Vol. 4, page(s):
2799-2803, Chicago, IL, USA.

